SpatialMap¶
- class SpatialMap(data: ndarray, positions: _Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | AbstractSites, sublattices: _Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None)¶
- Represents some spatially dependent property: data mapped to site positions - Attributes - callsig- 1D array of values for each site, i.e. maps directly to x, y, z site coordinates. - Total number of lattice sites - Lattice site positions. - 1D array of sublattices IDs, short for - .sublattices- 1D array of sublattices IDs - 1D array of coordinates, short for - .positions.x- Return a new array with shape=(N, 3). - 1D array of coordinates, short for - .positions.y- 1D array of coordinates, short for - .positions.z- Methods - __getitem__(idx)- Same rules as numpy indexing - _decorate_plot([ax])- _make_crop_indices(limits)- Return the indices into - objwhich retain only the data within the given limits- clipped(v_min, v_max)- Clip (limit) the values in the - dataarray, see- clip()- convolve([sigma])- Convolve the data with a Gaussian kernel of the given standard deviation - cropped(**limits)- Return a copy which retains only the sites within the given limits - plot_contour([ax])- Contour plot of the xy plane - plot_contourf([num_levels, ax])- Filled contour plot of the xy plane - plot_pcolor([ax])- Color plot of the xy plane - save_txt(filename)- with_data(data)- Return a copy of this object with different data mapped to the sites - __getitem__(idx: int | _Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes]) SpatialMap¶
- Same rules as numpy indexing 
 - clipped(v_min: int, v_max: int) SpatialMap¶
- Clip (limit) the values in the - dataarray, see- clip()
 - convolve(sigma: float = 0.25)¶
- Convolve the data with a Gaussian kernel of the given standard deviation - Parameters:
- sigmafloat
- Standard deviation of the Gaussian kernel 
 
 
 - cropped(**limits) SpatialMap¶
- Return a copy which retains only the sites within the given limits - Parameters:
- **limits
- Attribute names and corresponding limits. See example. 
 
 - Examples - Leave only the data where -10 <= x < 10 and 2 <= y < 4: - new = original.cropped(x=[-10, 10], y=[2, 4]) 
 - plot_contour(ax: Axes | None = None, **kwargs) TriContourSet¶
- Contour plot of the xy plane - Parameters:
- axOptional[plt.Axes]
- The axis to plot on. 
- **kwargs
- Forwarded to - tricontour().
 
 
 - plot_contourf(num_levels: int = 50, ax: Axes | None = None, **kwargs) TriContourSet¶
- Filled contour plot of the xy plane - Parameters:
- num_levelsint
- Number of contour levels. 
- axOptional[plt.Axes]
- The axis to plot on. 
- **kwargs
- Forwarded to - tricontourf().
 
 
 - plot_pcolor(ax: Axes | None = None, **kwargs) TriMesh | PolyCollection¶
- Color plot of the xy plane - Parameters:
- axOptional[plt.Axes]
- The axis to plot on. 
- **kwargs
- Forwarded to - tripcolor().
 
 
 - with_data(data) SpatialMap¶
- Return a copy of this object with different data mapped to the sites 
 - property data: ndarray¶
- 1D array of values for each site, i.e. maps directly to x, y, z site coordinates 
 - property positions: Positions¶
- Lattice site positions. Named tuple with x, y, z fields, each a 1D array. 
 - property sub: ndarray¶
- 1D array of sublattices IDs, short for - .sublattices