FatBands¶
- class FatBands(bands: Bands, data: _Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], labels: dict | None = None)¶
- Band structure with data per k-point, like SOC or pDOS - Parameters:
- bandsBands
- The bands on wich the data is written 
- dataarray_like
- An array of values wich were computed as a function of the bands.k_path. It can be 2D or 3D. In the latter case each column represents the result of a different function applied to the same - variableinput.
- labelsdict
- Plot labels: ‘data’, ‘title’ and ‘columns’. 
 
- bands
 - Attributes - callsig- num_bands- Methods - _decorate_plot([point_labels, ax])- Decorate the band structure - _point_names(k_points)- colorbar(**kwargs)- Draw a colorbar with the label of - Sweep.data- dos([energies, broadening])- Calculate the density of states as a function of energy - line_plot([point_labels, ax, idx, plot_colorbar])- Line plot of the band structure with the color of the lines the data of the FatBands. - plot([point_labels, ax, legend])- Line plot of the band structure with the given data - plot_bands(**kwargs)- Line plot of the band structure like in Bands. - plot_kpath([point_labels])- Quiver plot of the k-path along which the bands were computed - reduced([columns, orbitals, fill_other])- Return a copy where the data is summed over the columns - with_data(data)- Return a copy of this result object with different data - colorbar(**kwargs)¶
- Draw a colorbar with the label of - Sweep.data
 - dos(energies: _Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None, broadening: float | None = None) Series¶
- Calculate the density of states as a function of energy \[\text{DOS}(E) = \frac{1}{c \sqrt{2\pi}} \sum_n{e^{-\frac{(E_n - E)^2}{2 c^2}}}\]- for each \(E\) in - energies, where \(c\) is- broadeningand \(E_n\) is- eigenvalues[n].- Parameters:
- energiesarray_like
- Values for which the DOS is calculated. Default: min/max from Bands().energy, subdivided in 100 parts [ev]. 
- broadeningfloat
- Controls the width of the Gaussian broadening applied to the DOS. Default: 0.05 [ev]. 
 
- Returns:
 
 - line_plot(point_labels: List[str] | None = None, ax: Axes | None = None, idx: int = 0, plot_colorbar: bool = True, **kwargs) LineCollection | None¶
- Line plot of the band structure with the color of the lines the data of the FatBands. - Parameters:
- point_labelsOptional[List[str]]
- Labels for the - k_points.
- axOptional[plt.Axes]
- The Axis to plot the bands on. 
- idxint
- The i-th column to plot. Default: 0. 
- plot_colorbarbool
- Show also the colorbar. 
- **kwargs
- Forwarded to - matplotlib.collection.LineCollection().
 
 
 - plot(point_labels: List[str] | None = None, ax: Axes | None = None, legend: bool = True, **kwargs) List[PathCollection] | None¶
- Line plot of the band structure with the given data - Parameters:
- point_labelsOptional[List[str]]
- Labels for the - k_points.
- axOptional[plt.Axes]
- The Axis to plot the bands on. 
- legendbool
- Plot the legend of the bands on the axes. 
- **kwargs
- Forwarded to - plt.plot().
 
 
 - plot_kpath(point_labels: List[str] | None = None, **kwargs) None¶
- Quiver plot of the k-path along which the bands were computed - Combine with - Lattice.plot_brillouin_zone()to see the path in context.- Parameters:
- point_labelsOptional[List[str]]
- Labels for the k-points. 
- **kwargs
- Forwarded to - quiver().
 
 
 - reduced(columns: List[int] | None = None, orbitals: List[str] | None = None, fill_other: float = 0.0) FatBands¶
- Return a copy where the data is summed over the columns - Only applies to results which may have multiple columns of data, e.g. results for multiple orbitals for LDOS calculation. - Parameters:
- columnsOptional[List[int]]
- The colummns to contract to the new array. The length of - columnsagrees with the dimensions of data.shape[2]. The value at each position corresponds to the new column of the new Series object
- orbitals: Optional[List[str]]
- Optional new list of entries for the - orbitalslabel in- labels
- fill_otherfloat
- In case an array is made with a new column, fill it with this value. Default: 0.